AI Synergies ’19 – Bringing Together All AI-Backgrounds

“United in Diversity”. According to Holger Hoos, professor at the University of Leiden, this is not only the motto of the European union but can also serve as a guideline for the development of AI. This year’s AI synergies conference showed that it’s possible to actually turn this statement to reality. From the 6th to 8th of November, AI-researchers from Benelux gathered in Brussel to present and share the latest developments in the ever-changing field.

A quick look in the program of the conference already shows that ‘diversity’ was more than just an empty promise. For the first time ever, the conference had dedicated tracks for business and academics, showing that AI will strive more if knowledge between both is shared. Like in the previous year, AI synergies also combined ML-centered BeNeLearn and more general AI conference BNAIC. As a result the conference covered topics to everyone’s heart’s desire: from Knowledge Representation to Deep Learning, from Robotics to Creative AI or Natural Language Processing. Read more about the conference highlights here!

Machine Learning/Deep Learning:

Talking nowadays about AI, there’s no way to avoid the topic of Machine Learning. After all, many advances in this field have been made. There were multiple sessions covering research related to Machine Learning during AI synergies. With dedicated tracks for “ML for Bioinformatics & Life Science”, “AI for Health and Medicine” and “Applied ML & ML for Medicine”, many talks were about deploying Machine Learning for the highly societal relevant area of healthcare. The talks about using algorithms for HIV-, breast- or skin-cancer-, or sepsis detection highlighted AI’s promising potential as a diagnostic tool.

Explainable AI:

Closely connected to the field of Machine Learning, but still worthy of its own track was the Explainability session during AI synergies. Following the Peter-Parker principle of “with great power comes great responsibility”, researchers have recognized that more ethical AI can only come with more understandable systems. Many talks were dedicated on how to make AI more transparent, demonstrated in the field of robotics or on the example of convolutional networks.

Moreover, a key-note talk was dedicated to this particular topic. In the presentation “Explainable AI: explain what to whom” Silja Renooij warned about just using white-box models like Bayesian Networks as a sufficient explanation to AI systems. Not everyone has the necessary background knowledge to actually understand the difference between correlation and implied causation, so we should be careful to assume that Bayesian Networks are inherently understandable. She therefore argued that we should adjust explanations to users’ general understanding of AI/statistics.

Agents, Multi-Agent Systems and Robotics:

Next to a number of research-talks about agents- and multi-agent systems, AI synergies included a key-note about this topic, given by Jeremy Pitt. In “Democracy by Design” he described how a simulated civilisation can generate new rules to reduce risks of tyranny or autocracy when being implemented on the principles of Ober’s basic democracy.

Focussing more generally on robotics, Ana Paiva gave another key-note. Predicting that more and more robots will be integrated in our society, she argued that we should strive for a harmonic collaboration between humans and machines. Presenting a case-study of robots teaming up with humans to play a card game, she showed which factors we need to consider when designing and evaluating  Human-Robot-Interactions.

Knowledge Representation:

One of the oldest and most traditional approaches to AI is the field of Knowledge Representation. While currently much more attention is put on more modern techniques, Marie-Christine Rousset demonstrated in her key-note talk how we can tackle modern challenges regarding data quality (like e.g. data inconsistency) with more classic first- or second order logic rules.

In the track “Knowledge Representation & Hybrid”, multiple speakers elaborated on this idea, showing e.g. how the improvement of Knowledge Representation languages open up new possibilities for combination between old and new Data Science approaches.

Speaker and listeneres gathered in the Halle Vitrée

Of course this overview by far is not enough to cover all the diverse and engaging talks given during the conference. Therefore, make sure to check out the conference (pre)proceedings for a detailed overview of all research topics. One last thing that you might notice there, is how student-friendly the AI synergies conference is. Not only Master, but even Bachelor students admitted their abstracts and presented them at the conference. Hopefully, this encourages you to submit your own work to the next AI-synergies confernce in Leiden 2020!

So, to conclude: can AI be truly “United in Diversity”? Looking at the varying expertise-levels of the speakers, the range of topics covered by the conference, and the combination of business and research, we are happy to say that AI-synergies fulfilled this mission.

Leave a Reply